지리정보를 이용한 비행 시뮬레이터의 가상환경 구축

유병현*, 핸순홍**

Constructing Virtual Environment for Flight Simulators based on Digital Map

Yoo, B.H.* and Han, S.H.**

ABSTRACT

Interactive simulators that simulate mechanical systems are being developed for the purpose of performance evaluation of product design, replacement of physical training, and entertainment game. Use of flight simulator is increasing to reduce risk and cost of physical training, and we need virtual environment which covers large area terrain. We need a method that can reduce development cost and construction time of virtual environment that simulate the real environment. There have been attempts to link GIS or remote sensing field with virtual reality. This paper examines a method that helps to construct virtual environment, and attempts to link geographic information with virtual reality. A construction method of virtual environment based on digital map and satellite image has been studied.

Key words: Flight simulation, GIS, Level of detail, Satellite image, Virtual environment, Virtual reality

1. 연구의 배경

가상현실 시뮬레이터 기술은, 군사용 시뮬레이터를 중심으로 발전되어 오다가, 최근에는 민간 산업용 시뮬레이터로 그 기술이 전파되어 산업 혁신, 특수 상황 체험용, 위탁 산업용 등의 다양한 분야에 적용되고 있다. 가상현실 시뮬레이터의 시각화에 사용되는 대규모 가상환경은, 구축된 데이터의 용용 측면뿐만 아니라 제작 과정 자체가 연구 이슈가 된다. 그럼에도 가상환경의 구축은 시각적 현실감을 높이기 위하여, 지형 데이터의 전처리, 도로 및 지형물 자료, 모델의 단순화, 텍스처 복원, 다단계 상세(Low of Detail) 등의 다양한 방법을 이용한다. 그러나 이러한 방법만으로는 한계가 있다. 지형의 범위와 모델링 방법 측면에서, 높은 고품의 시각에서 낮은 고품의 시각의 시뮬레이션을 필요로 한다. 이를 해결하려면, 자동차의 드라이브 시뮬레이터에 비해서는 절박한 이론 범위로 인하여, 보다 대규모의 가상환경은 필요하다. 따라서 실제 환경정보에 기반으로 한 대규모 가상환경을, 보다 경제성이 고 쉽게 제작하기 위한 연구가 필요하다.

기존의 가상환경 제작에 사용된 3차원 모델링 위주의 가상환경 구축 방법은, 가상환경의 가시화 상황뿐만 아니라 구축에 필요한 시간과 비용면에서, 비행 시뮬레이터에서 필요로 하는 다단계 상세를 갖는 대규모의 가상환경 구축에 적합하지 않다. 따라서 이 논문에서는 지리정보시스템 분야에서 사용하는 수치지도와 위성영상 기반으로, 실제 환경을 모사하는 가상환경을 단시간에 경제적으로 구축하는 방법을 제안하였고, 그 결과에서 발생하는 문제점과 해결 방안을 도출하였다.

2장에서는 기존의 대규모 가상환경 제작방법과 지리정보시스템(GIS) 분야에서의 가상현실에 대한 연구 개발 동향과 문제점을 기술하고, 3장에서는 지리정보에 보고한 대규모 가상현환경의 구축방법을 제안하였으며, 4장에서는 제안한 방법에 따라 실제 환경을 가상화한 사례를 설명하였다. 5장에서는 구축된 가상환경의 결과를 분석하고, 제안된 방법의 문제점을 정리하였으며, 6장에서는 문제점을 해결하기 위한 앞으로의 연구과제에 대하여 기술한다.

2. 유사 연구 동향

2.1 대규모 가상환경

대규모 가상환경은 용용 측면 뿐만 아니라 제작

기존의 모델링 방식은 크게 가히 가상의 모델링 방법과, 이미지 기반의 모델링 방법으로 나눌 수 있다[48]. 가히 가상의 모델링 방식은 정면의 구성요소들이 없는 위치의 정수를 얻기 위한 기법으로, 모니터의 위치를 필요로 하며, 모니터와 같은 수치 자료가 없는 경우 모델의 정수를 정확하게 계산하기 어렵다는 단점을 가지고 있다. 레이어 이미지 기반의 모델링 방식은 시간을 비롯한 각각의 정수의 결과를 얻을 수 있으며, 시간이 빠른 모니터의 구조를 자동으로 삼각화하는 데에 이르는 단점을 가지고 있다. 그러나 각각의 결과를 얻기 위해서는 너무 정교한 사전이 필요하며, 결과에 따라서는 엄연한 오작용을 필요로 한다는 점에서, 가히 가상의 모델링 방법과 마찬가지로 대규모의 가상현실을 구성하기에는 부적절하다[49].

2.2 VR-GIS

지리정보시스템(Geographic Information System: GIS)은 지리적으로 참조 가능한 모든 형태의 정보를, 효과적으로 수집, 저장, 검색, 처리와 표현할 수 있는 소프트웨어 시스템을 말한다[50]. 가상현실과 지리정보시스템의 연계는 다음과 같이 두 가지 측면으로 구분할 수 있다. 첫째, 지리정보시스템의 인터레이스 등으로 이용자들이 대가, 효과적으로 개선하여 정보의 표현을 증가시키는 데에 이러한 기술적, 지리정보시스템에서 가상현실의 도입의 접근이 있다[48][50]. 지리정보시스템은 Fig. 1과 같이 2차원 지도에서 훈련한 Baldwin 방법론을 거치며 가상현실과 같은 위치를 통하여 VR-GIS 또는 Virtual GIS의 불리는, 물리환경에서의 3차원 GIS가 마지막 단계라고 할 수 있다. 상용 GIS 소프트웨어인 ESRI의 ArcView는 Avenue, ArcScript와 같은 스크립트 언어로 작성된 3차원 GIS를 이용하여 3차원 정보를 가상화하는 기능이 강화되고 있는데, 이는 GIS 인터페이스의 Interactive 3D와 되어 가는 단계로 볼 수 있다[52][53][54].

그러나 현재까지 이루어진 유사 연구는, 대부분 앞서 설명한 첫 번째 분류에 속한다. GIS의 관점에서 3차원 실시간 렌더링을 정의시킨데 그르고 있다. 이는 단순히 본 연구에서는, GIS 정보의 효과적으로 이용하여 보다 적은 노력과 비용으로 만족할 수 있는 가상환경을 구축하는 방법을 다루며, 이는 기존의 연구에는 미흡한 부분이다. 특히 지형의 고도정보로 넘어 사용되는 DEM 데이터를 이용한 지형 모델의 제작은 기존 연구에서 사용된 바가 있다[55][56]. 대표적인 GIS 정보와 수치정보를 기반으로 한 가상환경의 제작의 연구는 미흡하다. 본 연구에서는 DEM 정보의 이용 및 효율성의 문제점을 해결하기 위하여, 수치정보를 기반으로 한 가상환경 구축 방법을 제안하고, 이를 실제 데이터에 적용하여 대전 지역의 가상환경을 구축하였다.

3. 가상환경 구축을 위한 지리정보

3.1 지리정보(Geographic information)

GIS 분야에서 널리 사용되는 지리정보로는 고도자

Fig. 1. Development phase of expression about spatial information (view from GIS's viewpoint)
로(Digital Elevation Model: DEM), 수치지형도, 위성영상, 항공사진이 있다. DEM은 지표의 고도정보를 규격한 간격으로 나타낸 높이 값의 행렬이며, 수치지형도는 일반적인 지도를 디지털화 하여 도면의 형태로 가공한 것으로, 최근에는 DXF 형식의 수치지형도가 널리 이용되고 있다. DEM은 규격한 간격의 단순한 정보를 가지고 있어 정보의 이해와 가공이 쉽다는 장점이 있으나, 지형의 완급 정도와 무관하게 정보에 비하여 자료량이 크며, 한번 가공된 DEM에서 지표의 높이의 정보를 얻을 수 없다는 단점이 있다. 수치지형도는 등고선을 이용하여 땅의 지형, 형태, 수개의 배열 등의 지형을 정확하고 상세하게 나타낸 지도인 지형도로, 컴퓨터에서 사용할 수 있도록 디지털(digital) 형태로 변환한 것을 말하며, 수치지형도라고 한다. 위성 이미지로부터 생성한 DEM의 객자의 간격이 일반적으로 수십 m 정도인 것과는 달리, 수치지형도는 항해법에 의해 제작하기 때문에 등고선 사이의 간격이 5 m 이하(±5000 m 기준)이고, 등고선의 해상도는 1 m 정도로 자세한 지형정보를 얻을 수 있다. 위성영상과 항공사진은 DEM과 수치지형도 제작에 소스 정보로 사용되며, 서로 다른 위치에서 촬영한 영상과 삼각법을 이용하여 원하는 위치의 거리와 계산하는 방법(Photogrammetry)이 널리 이용된다.

3.2 지리정보를 이용한 가상환경 구축 방법
가상환경을 위한 지형데이터의 구축은 사용 방법과 소스 정보의 형태에 따라 여러 가지 방법이 있다. 가장 일반적으로 사용되는 방법은 위성을 이용하여 고도 자료와 텍스트를 생성하여 3차원 지형 모델을 제작하는 방법이다[15-17]. Fig. 2 (a)는 Kompas(아리아무스)의 EOC(전자광학카메라)를 이용하여, 대전 지역 각 각 좌우측에서 촬영하여 스테이로 영상을 얻은 후, 10 m 각자의 수치표고모델(DEM)을 추출하여 제작한 3차원 지형 모델에, LandSat5 위성의 TM(Thematic Mapper) 영상을 이용하여 겔러리를 입력한 대전 지역 3차원 영상지도이다[16-17]. Fig. 2 (b)는, (a)의 다른 위성영상에서 동일한 방법으로 제작한 3차원 지형 모델을 VRML로 변환하여 내비게이션인 것이다.

이와 같이 위성 영상에서 3차원 지형 데이터를 제작하는 방법은, 비교적 쉽고 빠르게 결과를 얻을 수 있는 장점이 있다. 그러나 이 방법은 위성 이미지의 해상도와 방법의 자세적인 한계로 인하여, DEM의 격자를 원하는 만큼 자세하게 줄이기 어렵고, 건물 등의 시설물이 포함된 표고모델이라는 단점이 있다. 이러한 특징은 앞서 전고도를 정시간 유지하는 비행기의 시뮬레이션에서는 사용이 가능하나, 고도범위가 비교적 자료로는 웰러터치의 시뮬레이션에는 적합하지 않다. 또한 시뮬레이션이 포함된 표고모델의 경우, 이를 기반으로 제작한 지형모델은 건물과 같은 지형물체를 추가하는 데 어려움이 있다. 그러나 현재까지 시동된 대부분의 대규모 가상환경 제작과 관련된 연구는, 모두 DEM 데이터를 기반으로 하고 있으나, 위성영상에서 DEM 데이터를 가공하여 지형 모델을 제작하는 방법은 다음과 같다.

• DEM 데이터가 아닌 수치지형도를 기반으로 고도 정보를 추출한다.
• 수치지형도의 고도정보로부터 TIN(Triangulated Irregular Network)을 생성한다.
• 실시간 가시화에 사용가능하도록 모델의 간략화 및 최적화 과정을 거친다.
• 위성영상과 텍스처 데이터를 생성한다.
• 다단계 상세화에 따라 각 단계의 지형 모델과 텍스처를 적용한다.
• 가상환경 데이터베이스에 저장모델을 적용하고, 건물 등의 지형 모델을 추가한다.
• 수치지형도로부터 고도정보의 이외의 정보에 대한 정보를 활용한다.
 본 연구에서 제안하는 수치지형도 기반으로 한 가상환경 구축방법에서 얻어지는 정보는 다음과 같다.
• 수치지형도의 지형하고 정확한 고도 정보를 활용할 수 있다.
• DEM에 비하여 비교적 저렴하게 수치지형도를 얻을 수 있다.
• 전국적인 수치지형도 제작 사업이 지속적으로 진행되어서 가상환경의 확장이 용이하다.
• 가상환경의 확장시 동일한 방법을 적용함으로써 낮은 비용과 시간으로 확장이 가능하다.
• 수치지형도를 이용함으로써, 고도정보 이외의 부가적인 지원자료에 대한 정보의 활용이 가능하다.

4. 가상환경 구축 사례

비행 시뮬레이션을 위한 가상환경의 제작 과정은 ① 지형 데이터(Base Terrain)를 제작하는 과정과, ② 지형 데이터 위에 존재할 지형자료를 제작하는 과정, 그리고 ③ 완성된 지형 데이터와 지형자료로 전체 가상환경을 구성하는 과정으로 이루어진다. 지형자료를 제작하고 지형 데이터 위에 지형자료를 배치하여 가상환경을 구성하는 과정은, 선행된 연구사례에서 자세하게 설명하고 있으므로[12, 13], 이 논문에서는 소스 정보를 가공하여 지형 데이터를 제작하는 과정에 중점을 둔다.

4.1 소스 정보: NGIS 수치지형도

이 논문에서 사용한 수치지형도는 국립자료원에서 발행한 NGIS(국가지리정보시스템) 수치지형도로서, NGIS의 주민 현황과 보안 등의 문제로 인하여 가장 저세한 1:10000 도 매신 1:5000도를 사용하였다. Fig. 3은 선행 사례 중 일부의 1:5000도 인테제스코, 곡선 심선으로 표현된 지역이 실제 소스 정보로 사용된 영역이다. 이 영역은 KAIST를 중심으로 한 주변지역에 해당하며, 작은 직진각형은 수치지형도의 각 도일을 나타내는데, 이는 가로 약 2.2 km 세로 약 2.7 km의 영역을 표현한다. 국립자료원에서 발행하는 수치지형도는 AutoCAD용 DXF 형식의 파일로 제공되며, 실제 사용된 수치지형도는 모두 9도였으며, Fig. 4와 같다.

4.2 전처리(Preprocessing)

NGIS 수치지형도는 Table 1-A와 같이 지형 정보만이 아니라 그 외에 다양한 정보를 포함하고 있다[13]. 3 차원 지형데이터를 구축하기 위해서는, 수치지형도에서 7번 레이어 코드에 해당하는 지형 데이터만을 골라내야 한다. 수치지형도의 7번 코드에는 Table 1-B와 같은 세부 분류코드가 숨어 있는데, 이는 실제 DXF의 레이어 정보를 나타내는 코드로, 각 레이어의 정보를 구분하는 역할을 한다. 그에 따라 7번 코드는 3차원 모델링에 필요한 정보를 제공한다. 3차원 모델링에서 도달하고자 하는 지형 데이터는 3차원 모델링의 기본요소로 사용된다.
이러한 내용을 이해하기 위해, AutoCAD 2002를 이용하여 7110번부터 7124번까지의 레이어를 필터링하였다.

4.3 TIN의 생성

수치지형도의 DXF 형식은 3차원 좌표계를 이용하기는 하지만, 지형과 관련된 등고선은 Polylines으로 정의되어 있다. 따라서 가장 현실 시뮬레이터에 사용하기 위해서는 이를 3차원 깊이로 변환해야 한다.

등고선으로 구성된 지형 데이터를 3차원 깊이로 변환하는 방법은 일반적으로 두 가지로 분류된다. 첫 번째 방법은 등고선에서 일정한 간격의 Grid를 갖는 DEM을 형성하는 방법이다. 이 방법은 2차원 평면상의 X좌표와 Y좌표를 일정 간격으로 변형하면서 등고선 값을 이용하여 Z좌표를 얻어, 등 간격의 Z값의 각각을 생성하는 방법으로, 직접 코드를 작성하여 생성하거나 ENVI, DXF2DEM 등의 소프트웨어를 이용할 수 있다. 두 번째 방법은 등고선에서 삼각형 패치로 이루어진 TIN(Triangulated Irregular Networks)을 생성하는 것이다.

첫 번째 방법은 원하는 격자의 간격에 따라 쉽게 DEM을 생성할 수 있는 장점이 있지만, 지형의 복잡도와는 관계없이 동일한 크기의 데이터를 생성해내기 때문에, 지형의 설치간 렌더링 방법으로는 적합하지 않은 경우가 많다. 두 번째 방법은 등고선의 표현에 사용된 Polylines를 기반으로 TIN을 구성하기 때문에, 복잡한 지형은 총정한 삼각형 패치로 나타나고, 완만한 경지는 낮은 삼각형 패치로 나타나게 된다.

TIN 생성은 잘 알려진 브러시 생성 알고리즘 등을 이용하여 직접 코드를 작성하거나, 공개된 코드를 수정하여 작성할 수 있다. 본 연구에서는 사용 프로그램인 ESRI의 ArcGIS를 사용하여 DXF 형식의 Polylines에서 TIN을 생성하였다.

4.4 최적화(Optimization)

위와 같이 생성한 TIN 데이터는 방대한 양의 삼각형 패치가 된다. 항공측량에 의한 1:5000 수치지형도의 경우 등고선의 측량정 도 사이 간격이 최소 1m이며, 이 하여기 때문에, 1도입(2.2 km × 2.7 km) 단 10만개가

![Surface rendering](image1)

(a) Surface rendering

![Wireframe rendering](image2)

(b) Wireframe rendering

Fig. 5. VRML model made from TIN data.

한국CAD／CAM학회 논문집 제9권 제2호 2004년 6월
금속의 삼각형으로 이루어진 TIN 데이터가 생성된다. 생성된 TIN 데이터는 시뮬레이터에서 설치한 것으로 처리하기에 편리한 형태의 파일로 구분된다. 삼각형의 변을 결정하는 방법은 유향으로 설정된 플러그인을 제거하고 플러그인 수를 줄이는 모델 간략화 작업이 필요하다.

Fig. 5의 (a)는 TIN 데이터를 3차원 지형모델로 처리하기 위하여 VRML로 저장하여 가시화 한 것이다. 이 모델은 Fig. 5의 (b)과 같이 블록의 총합인 등고선 도표에 삼각형 패치가 과도하게 작용된 것을 보고 있다. 실제 2.2 km × 2.7 km × 130 m(1도입)의 지형에서 VRML 모델을 생성했을 때, 모델의 복잡도는 130k 트리거, 88k vertices.으로, 한국과학기술원 자력 지형 시뮬레이터에서 사용된 캐파스 모델(18.9k faces, 22.4k vertices)과 베이드 모델(3.5k faces)에 비해 복잡하다. 작성한 VRML 모델은 1도입의 파일 크기가 25MB, 9도입을 통합한 모델의 파일 크기 125MB로 후속 작업에 어려움을 느낀다.

VRML 모델의 간략화는 Parallel Graphics의 Internet model optimizer를 사용하였으며, Vertex concatenation ratio를 이용하여 Preprocessing을 한 후, Crease angle을 이용하여 Optimization을 이용하였다. Crease angle을 증가시키기 위하여 Table 2의 각각의 플러그인 수를 감소시킬 수 있다. Fig. 6의 (a)는 간략화를 수행하기 전의 VRML 모델이며, Fig. 6의 (b)는 플러그인 수를 1/10로 감소시킨 후의 VRML 모델이다.

모델의 간략화 정도(Optimization ratio)는 설치기간으로 가시화할 수 있는 플러그인 수를 절단적으로 산출하여 결정하였다. 간단한 가시화 설정을 통하여 1개의 지형모델에 대하여 10,000개 내외의 삼각형으로 이루어지도록 재현하였으며 최초 생성된 TIN의 삼각형의 수와 비율을 고려하여 각 지형모델에 대한 Optimization ratio를 결정하였다.

4.5 지형 텍스처의 처리 과 단계 모델

간략화 작업을 거친 지형모델은 MultiGen[24-25]에서 설계 시뮬레이터에서 사용할 수 있도록 추가적인 작업을 거쳐 OpenFlight과 같은 설치한 시뮬레이션용 모델로 재작성한다. 일반적인 위치 이동자는 원형 각도에 따라 왼쪽/복잡한 정보를 갖고 있기 때문에, 수지지표지점의 각도의 경합포와 상관 관계의 과정을 통한 경사영상으로 변형한다[23]. 위치 영상의 변위는 위치의 위치, 각도 등과 같은 영상의 환경정보를 이용하는 것도 가능하다. 본 논문에서는 지형모델과 보다 정확한 매핑을 위하여, Fig. 7과 같이 위치 영상 위에 수치지를 및 무시지도를 포개어, 수치지도의 지형지표와 위치 영상의 지형 지표를 1:1로 매핑하는 과정을 통해 변형하여 가상환경을 구축하였다. 텍스처 이미지의 소스 텍스처로는, 1 m 해상도 영상보다 상대적으로 경계적인 6.6 m 해상도의 아리랑 위치의 흑백 영상을 사용하였다. 이 영상의 텍스처에는 10 m 해상도의 흑백 영상을 이용하였는데, Fig. 7과 같이 흑백 위치상상 위에 지형지표를 이용하여 10 m 흑백 위치상상을 배경한 후, 이 흑백 위치상상의 색 정보를 이용하여 흑백 위치상상의 영상에 색 정보를 추가하여 6.6 m 해상도의

Table 2. The result of optimizing VRML model

<table>
<thead>
<tr>
<th>Optimization Ratio</th>
<th>0</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Triangles</td>
<td>130194</td>
<td>65097</td>
<td>39058</td>
<td>13019</td>
</tr>
<tr>
<td>Vertices</td>
<td>88670</td>
<td>39743</td>
<td>23501</td>
<td>8137</td>
</tr>
</tbody>
</table>

Fig. 6. Optimized process of VRML model.

Fig. 7. Enhancement of satellite image for texturing.

한국CAD／CAM학회 논문집 제9권 제2호 2004년 6월
전체 위상영상을 생성하였다.
준비된 3차원 기하학적 모델(상세모델)과 텍스처를 이용하여 MultiGen에서 텍스처 배경을 하고, 각각의 형상과 경계를 위하여 LoD(Level of Detail, 단단계 상세) 기법을 적용하였다. 엘리터리 시뮬레이터는 그 특성상 시점의 이동 범위가 넓고, 고도의 변화가 자유롭기 때문에, 낮은 고도에서 바라본 좌측 영역의 지표면 부근 영상과, 높은 고도에서 바라본 낮은 영역의 영상 모두, 적정 수준의 현실감을 제공해 주어야 한다. 이를 위하여 4단계의 Level of Detail을 적용한 가상환경을 구축하였다. Fig. 8과 같이 엘리터리 시뮬레이터의 이동과 각도에 사용되는 KAIST 캠퍼스 지역은, 도로, 건물과 같은 지형지를 3차원 모델로 구축하여, 근거리에서도 현실감을 제공할 수 있도록 하였다. Table 3의 LOD1은 KAIST 캠퍼스의 3차원모델을 포함한 가장 자세한 지형모델이고, LOD2는 캠퍼스의 3차원 모델을 포함하지 않는 자세한 위상영상을 사용한 지형모델이며, LOD3, LOD4는 위치 낮은 영역에 해당하는 지형모델이다. 낮은 영역의 비교적 자세하지 않은 지형 모델은, 20m 해상도의 DEM (Digital Elevation Model)에서 TIN을 생성하여 구축하였다. Fig. 9는 LoD에 따른 지형모델의 변화를 나타낸다.

Fig. 8. LoD (Level of Detail) structure of virtual environment.

Table 3. Source information used to construct LoD

<table>
<thead>
<tr>
<th>LoD</th>
<th>지형모델</th>
<th>텍스처</th>
<th>지형지물</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD1</td>
<td>1:5000 NGIS-waterlevel</td>
<td>6.6m 아리랑 위성 영상</td>
<td>KAIST Campus</td>
</tr>
<tr>
<td>LOD2</td>
<td>20m DEM</td>
<td>6.6m 아리랑 위성 영상</td>
<td>-</td>
</tr>
<tr>
<td>LOD3</td>
<td>20m DEM</td>
<td>10m 위성 영상</td>
<td>-</td>
</tr>
<tr>
<td>LOD4</td>
<td>평면</td>
<td>위성영상(안측)</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 9. The change of virtual environment depend on LoD change.

5. 문제점 분석 및 연구과제

5.1 지형데이터의 개요
수치지형도를 기반으로 만들어진 정교한 지형 모델은 실시간으로 렌더링하기에는 너무 많은 수의 다각형을 포함하고 있을 뿐 아니라, 필요 이상의 고도된 복잡도를 갖고 있다. 이를 효과적으로 보완할 수 있는 방법은, 모델의 외형을 유지하면서 풀리온 수를 줄이 는 것이다. 일반적인 3차원 모델의 단순화는 달리, 수치지형도를 기반으로 만들어진 TIN 데이터는, 수치 지형도의 등고선 정보에 사용된 Polyline의 각 Vertices를 모두 이용하여 형성된 삼각형 패치들의 집합이기 때문에, 수치지형도를 재구성하기 위하여 측정한 측량점의 조밀도를 그대로 따르게 된다. 수치지형 도의 등고선은 등고선 사이의 간격이 5m이하이고 (1:50000도 기준)(30), 등고선의 해상도는 1m 정도로 자세한 지형정보를 얻을 수 있다. 따라서 수치지형도로 투영 생성된 TIN은 두개의 등고선을 재우는 Triangular strip의 형태를 띄게 된다. 이때 Strip의 형태는 진행방향으로 폭이 좁은 길목, 삼각형이 반복하게 나타나게 되는데, 그 이유는 수치지형도의 등고선의 진행방향과 수직방향의 거리비가 약 1:50이기 때문이다. TIN 생성은 삼각계면의 생성 알고리즘으로 이어 많은 연구가 진행되었지만, 수치지형도의 등고선 에 어떠한 방법이 가장 적합한지가 문제이다. 또한 수치지형도를 기반으로 만들어진 정교한 곡면 지형모델을 간략화 하는 과정에서, 어느 정도까지 간략화를 할 것인가를 시뮬레이터의 시각적 현실감과 렌더링 성
5.2다단계 상세(LoD)

LoD가 적용된 지형 모델의 단계를 바뀔 때, 어떻게 하면 사용자가 단계의 전환을 느끼지 못하도록, 자연스럽게 표현할 수가 있는 문제에 대한 연구가 필요하다. 이를 위한 해결 방법으로 LoD 기법을 모델에 적용하는 대신에, 렌더링 시에 실시간으로 동적 LoD를 생성하여, 가시화된 장면의 상태에 적합한 가장 효율적인 LoD를 생성하는 방법에 대한 연구가 진행되고 있는데(15), 두 가지 LoD 기법의 장점을 동시에 이용하는 하이브리드 방법에 대한 연구가 이루어져야 할 것이다.

이 문제의 다른 해결 방법으로 programmable shader를 이용한 displacement mapping에 관한 연구가 진행되고 있다(26). Displacement mapping은 가상 환경의 모델링과 가시화 두 가지 측면 모두에 적용되는 방법으로, 지형 데이터의 가용도에 필요한 노력에 좀 이면서 보다 현실감 있는 가상환경을 제공할 것으로 기대된다.

5.3다른 문제점

이 외의 기술적인 문제들을 나열하면 다음과 같다.

• GIS와 VR 도구를 사이의 자료 교환 : 지형 데이터를 구축하기 위한 소스 정보를 다루는 GIS 관련 프로그램(AutoCAD, ENVI, ArcGIS 등)과, 실제 3차원 지형 모델을 다루어야 하는 가상환경 자료 도구들(AutoCAD, 3DS, Multigen 등의 데이터 포맷이 다르기 때문에, 이들 사이의 표준형식 변환에 민감하게 반응한다. 일반적인 가상환경 제작에 사용되는 모델링 프로그램을 포함한 가상 환경 자료 도구 사이의 파일 형식 변환 문제도 있지만, GIS와 VR 도구 사이의 특성 차이로 인하여 자료 교환에 어려움이 따르다. 이러한 문제의 해결 방법으로 환경정보 표현의 표준인 SEDRIS를 이용한 정보교환에 관한 연구가 진행되고 있다(34,36).

• 방대한 자료의 조작 : 비행 시뮬레이션을 이용한 지형 데이터는, 자동차 주행 시뮬레이터에 비하여 넓은 지형을 필요로하기 때문에, 방대한 양의 지형 모델을 생성하고 관리하는데 어려움이 따른다.

• 지형모델의 구축비용 : 지형모델은 제작에 사용하는 GIS 및 VR 관련 상용 도구들이 고가의 프로그램들이며, 제작에 필요한 소스 정보 또한 고가이기 때문에 자료를 쉽게 구하기가 어렵다. 특히 위성 이미지의 경우 해상도에 비해하여 가격이 높아지기 때문에, 자세한 지형모델의 텍스처를 제작하기 어려우나 또한 경제적인 이유로 인하여 자료와 도구의 구입에 신중한 검토가 필요하다.

5.4결론

이 논문에서는 수치지형도를 기반으로 대규모 가상 환경을 제작하는 방법을 제안하고, 실제 대전 지역의 지형 데이터를 이용하여 가상환경을 구축하였다. 이 논문을 제안한, 지형지형도를 기반의 가상환경 제작 방법을 이용하면, 낮은 비용과 개발기간으로 대규모의 가상환경을 제작할 수 있으며, DEM을 이용한 기존 연구와 비교하여 상세한 지형 모델의 정밀도를 높일 수 있다. 이는 DEM을 이용한 기존의 방법에 비하여 저렴한 개발비용으로도 정밀도를 높일 것으로 판단된다. 또한, 이 연구에서 제안한 방법을 가상환경 구축과정에 적용한 결과에서, TIN 생성과정과 다르게 모델에서 나타나는 문제점을 피하였으며, 정립적으로 앞으로 연구 방향을 정립할 수 있었다.

본 논문에서 사용한 수치지형도는 현재 국립지리원에서 제작한 수치지형도 제작사업이 지속적으로 진행되고 있기 때문에, 향후 실제 지형에 기반을 둔 가상환경의 확장이 용이한 것으로 기대된다.

5.5앞으로의 연구

• 보다 경제적이고 효율적인 실제 지형정보를 이용한, 대규모 가상환경의 제작을 위해서 필요한 앞으로의 연구를 정리하면 다음과 같다.

• 보다 효과적이고 경제적인 지형모델을 생성하기 위한, 수치지형도에 특화된 TIN 생성 방법을 제안하고 검증한다.

• Programmable Shader를 이용하여 하드웨어 가속이 가능한 Displacement mapping을 적용하고, 이에 적합하도록 가상환경 구축 방법을 개선하고 실험한다.

감사의 글

본 연구의 결과물은 한국과학재단 가상현실연구센터(VRRC) 지원으로, KAIST에서 개발한 소프트웨어 렌더러 VR 시뮬레이터에 사용되었다(39).

참고문헌

1. 이종환, 한순호, “1축 운동의자를 이용한 가상현실

한국CAD/CAM학회 논문집 제9권 제2호 2004년 6월
6. ESRI, “How To: Create a TIN with Avenue,” http://support.esri.com/index.cfm?fa=knowledgebase.techarticles.articleShow&d=22704
유 병 현
1997년 연세대학교 기계공학과 학사
1999년 한국과학기술원 기계공학과 석사
1999년-현재 한국과학기술원 기계공학과 박사과정

한 순 혁
한국과학기술원 기계공학과의 교수이며, 현재 한국과학기술원 국제학술지 International Journal of CAD/CAM(www.ijcc.org)의 편집장으로 활동하고 있다. 2003년까지 STEP센터(www.kstep.or.kr)의 회장을 임직하였으며, 관심분야는 STEP, 가상현실, 웹, 실시간 CAD이다. 연락처는 shhan@kaist.ac.kr, 홈페이지는 http://cad.kaist.ac.kr, 미국 미시간 대학에서 1990년 박사학위